3,791 research outputs found

    Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch.

    Get PDF
    The formation of spatiotemporal patterns of gene expression is frequently guided by gradients of diffusible signaling molecules. The toggle switch subnetwork, composed of two cross-repressing transcription factors, is a common component of gene regulatory networks in charge of patterning, converting the continuous information provided by the gradient into discrete abutting stripes of gene expression. We present a synthetic biology framework to understand and characterize the spatiotemporal patterning properties of the toggle switch. To this end, we built a synthetic toggle switch controllable by diffusible molecules in Escherichia coli. We analyzed the patterning capabilities of the circuit by combining quantitative measurements with a mathematical reconstruction of the underlying dynamical system. The toggle switch can produce robust patterns with sharp boundaries, governed by bistability and hysteresis. We further demonstrate how the hysteresis, position, timing, and precision of the boundary can be controlled, highlighting the dynamical flexibility of the circuit

    Near infrared and optical morphology of the dusty galaxy NGC972

    Full text link
    Near infrared (NIR) and optical surface photometric analyses of the dusty galaxy NGC972 are presented. The photometric profiles in the BVRJHK bands can be fitted with a combination of gaussian and exponential profiles, corresponding to a starburst nucleus and a stellar disk respectively. The exponential scale length in the B-band is 2.8 times larger than in the K-band, which implies a central B-band optical depth as high as 11. A bulge is absent even in the NIR bands and hence the galaxy must be of a morphological type later than the usually adopted Sb type. Relatively low rotational velocity and high gas content also favor a later type, probably Sd, for the galaxy. Only one arm can be traced in the distribution of old stars; the second arm, however, can be traced in the distribution of dust and HII regions. Data suggest a short NIR bar, which ends inside the nuclear ring. The slowly rising nature of the rotation curve rules out a resonance origin of the the nuclear ring. The ring is most likely not in the plane of the galaxy, given its circular appearance in spite of the moderately high inclination of the galaxy. The off-planar nature of the star forming ring, the unusually high fraction (30%) of the total mass in molecular form, the presence of a nuclear starburst and the asymmetry of spiral arms, are probably the result of a merger with a gas-rich companion galaxy.Comment: Uses aas2pp4.sty and epsfig.sty, 12 pages To appear in Astronomical Journal, October 199

    Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors.

    Get PDF
    Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors
    corecore